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Abstract
Most novel superconductors are expected to show unconventional pairing and anisotropic vortex-

vortex interaction. However, it is notoriously difficult to provide experimental evidence for the

presence of anisotropic interaction. In this project we investigate superconducting vortex matter

under the extreme confinement of nanoscale and mesoscopic samples. We calculate numerically

the structure of Abrikosov vortices trapped in mesoscopic samples with a variety of rotational

symmetry, such as triangles, squares, disks, etc. We use a combination of numerical techniques,

such as energy landscape investigation via the eigenvector following method, and self-consistent

numerical Ginzburg Landau calculations. We find that the interplay between sample geometry

and vortex interaction anisotropy can qualitatively alter the structure of vortex matter under this

extreme confinement regime. We argue that containers with low symmetries, in combination with

experimental visualization of vortex matter in mesoscopic samples, either via Bitter decoration,

or scanning probe (STM or scanning Hall) measurements can be used to detect the presence of

interaction anisotropy and consequently unconventional pairing in novel superconductors.
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I. INTRODUCTION

A. A Brief History Of Superconductivity

Upon its first discovery in 1911 by Heike Kamerlingh Onnes, superconductors have gained

enormous attention in both academia and industry. Using liquid helium, Onnes was able to

cool various materials to a temperature that the electrical resistance completely disappears[1].

These type of materials are known as the superconductors ever since. Another characteristic

of superconductors is their perfect diamagnetism known as the Meissner-Ochsenfeld effect,

which means that the materials expel the magnetic field lines (see Fig. 1)[1, 2]. The magnetic

flux is still able to penetrate the surface of the superconductors with an exponential decay

and forms the so called Meissner current. The characteristic width of the Meissner current is

called the penetration depth λ, which indicates how far the magnetic flux penetrates into

the superconducting material.

The superconducting state of a material is often obtained under low temperature, high

pressure, and weak magnetic field regime. The phase diagram for some superconductors is

shown in the Fig. 2. The points where the superconducting state is destroyed are called

the critical points, where the corresponding temperature is called the critical temperatures,

likewise the critical fields, and the critical pressures. The critical behaviors of superconductors

is one of the most heated topics because it could lead to potential real world applications[3].

Superconductors can be used as the magnets for particle colliders, the Magnetic Reso-

nance Imaging devices. They could also reduce the energy dissipation in electrical power

transmissions.

When the applied magnetic field is too strong, the Mercury superconductor that Onnes

discovered exits the superconducting state suddenly as shown in Fig. 3. In 1935, Rjabinin

and Shubnikov observed that for some other superconductors, as the applied magnetic field

increases, the magnetic flux penetrate into the superconductors while the superconductors

experience a mixture of normal state and the superconducting state before completely

return to the normal state. This type of superconductors is thereafter referred to as the

Type-II superconductors while the superconductors that exit superconducting state suddenly

are called the Type-I superconductors. Their difference is best illustrated in the Fig. 4.

The mixed state has several special properties, one of which being that the magnetic field
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FIG. 1: Schematic showing that magnetic field lines are repelled away from the

superconducting material. λ is the penetration depth.

penetrate through the superconductors in the form of vortices. The Fig. 5 shows that the

Type-II superconductors are able to maintain the superconducting state at a much higher

temperature, which allows them to have greater application potential.

There are two mainstream theories explaining the phenomenon of superconductivity: the

microscopic Bardeen-Cooper-Schrieffer theory (BCS)[5] and the phenomenological Ginzburg-

Landau (GL) theory[6]. When the GL theory was first proposed, it was believed to be a

phenomenological theory. It turns out later that the BCS theory becomes the GL theory near
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FIG. 2: Phase diagram for several different superconductors[4].

the critical temperature Tc[1, 7]. In this project, we will focus on using the Ginzburg-Landau

theory to study the unconventional superconductors, where the BCS model based on electron-

phonon coupling is invalid[8]. The cooper pairs in the unconventional superconductors are

most likely bound by exchange other than the phonon-exchange. However, GL theory is still

applicable to study the vortex structures in the unconventional superconductors.

The GL theory was first proposed by two Soviet physicists Lev Lazarevich Davidovich

Landau and Vitaly Ginzburg in 1950. In the GL theory, they introduce an additional

parameter called the coherence length ξ. The ratio κ = λ/ξ is known as the Ginzburg-

Landau parameter. A superconductor belongs to Type-I superconductors if 0 < κ < 1/
√

2,

and belongs to Type-II superconductors if 1/
√

2 < κ.

One of Landau’s students, Alexei Abrikosov, further develops the GL theory for Type-II

superconductors and predicts the existence of quantized magnetic flux penetrating through

the Type-II superconductors in 1957[9]. In Fig. 7, Tinkham demonstrates how the vortices

arrange themselves, and in Fig. 8 Bending shows what vortex tube may look like in the

presence of the anisotropic interaction. These quantized magnetic fluxes are called the
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FIG. 3: Phase diagram for Type-I superconductors, where Tc stands for the critical

temperature and Hc stands for the critical field.

FIG. 4: Phase diagram for Type I and Type II superconductors in comparison.
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FIG. 5: Comparison of how the magnetic field penetrates through the Type-I and Type-II

superconductors.

Abrikosov vortices, which were observed experimentally using small-angle neutron diffraction

in 1964 and then confirmed again using the Bitter decoration technique in 1967[10, 11]. The

highly plausible observation of the vortices from Essmann, et al. is shown in Fig. 6. The

triangular lattice of the vortices in the bulk superconducting material can be clearly identified

in the image.

The emergence of vortices is one of the unique properties of the Type-II superconductors[12].

Vortex matter soon became a heated field of research ever since. Instead of viewing the

vortices as a system of rigid rods, the vortices could be considered as a system of interacting

line objects. These vortices have non trivial statistical mechanics and can be seen as a

new form of matter, which is known as the “vortex matter”[13]. As the vortices penetrate
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FIG. 6: Observation of vortices on the surface of a lead-4a% indium rod at 1.1oK using the

Bitter Decoration technique.

through the superconducting materials, they will move in the presence of an electrical

current, dissipating energy, and causing electrical resistance. However, at the same time,

their structures reflect the underlying interaction of the superconductors, which, in turn,

could potentially point to unconventional pairing in an unconventional superconductor.

One important branch of the vortex matter is the study of vortex structures, which

means how the vortices arrange themselves in the superconductors. The structure of the

vortices reflects the different interaction within the superconductors. For example, in bulk

superconductors with isotropic interaction, we have observed triangular lattices as shown in

Fig. 6. In circular mesoscopic superconductors with isotropic interaction, we observe circular

shell-like vortex structures as shown in Fig. 11. The underlying interaction can also lead

to anisotropic order parameters, which could be used as the evidence for unconventional

8



FIG. 7: Vortices in superconducting film.

superconductivity.

Unconventional superconductors have drawn much attention in the recent years following

the 1979 discovery of the CeCu2Si2 superconductor by Steglich, et al.[14]. They are uncon-
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FIG. 8: Schematic for vortices in the presence anisotropic interaction.

ventional in the sense that they cannot be described by the BCS model. The unconventional

superconductors attract people’s attentions because sometimes they have much higher critical

temperatures comparing to the traditional superconductors, which suggests that they have

greater potential in device applications. Another unique property of the unconventional

superconductors is that they exhibit symmetry breakings, e.g. time reversal and reflection

symmetry breaking. In this project, we are interested in the reflection symmetry breaking,

which implies that the unconventional superconductors have anisotropic order parameters,

i.e. p-, d-, and f-wave. Nonetheless, the unconventional superconductors are notoriously

difficult to identify experimentally[8]. Some experimental measures for the unconventional

superconductors are magnetic resonance below the critical temperature, the existence of

power law for various properties, and the existence of an anisotropic order parameter[8].

Another interesting research topic in superconductivity is the study of mesoscopic super-

conductors. Those superconductors often lead to counterintuitive observations like giant

vortices[15] and fractional vortices[16]. They also have unusual electromagnetic properties[17].

The most important property of the mesoscopic superconductors is its confinement effect

or the wall effect, where the edges of the containers exert forces on the vortices in the

superconductor and affect their vortex structure. In the case of the fractional vortices,

Chibotaru, et al. predicts that the confinement effect will stabilize the fractional vortices[16].

In this project, we are interested in the interplay between the anisotropic interaction between

the vortices and the confinement effect. For the vortices in mesoscopic superconductors, the

geometry of the superconductor determines the shape of the vortex structure. For mesoscopic
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superconductors with isotropic interaction, the geometries of the vortex structures often

reflect the geometry of the samples those vortices are in. The vortex structures conform with

the shape of the mesoscopic container. They also form the so-called magic number states

that exhibit shell like structures and higher stability for some magic number of vortices[18].

The vortex matter has also been studied greatly in experiments. Common techniques used

in observing vortices includes SQUID, Bitter decoration, and STM techniques. We will give

some examples of the experimental observation results using these techniques in Section IC.

B. Ginzburg-Landau Theory For Vortex Matter

In this section, I will give a concise summary of the Ginzburg-Landau theory for vortices[1].

GL theory introduces a macroscopic function ψ that describes the superconducting electrons,

where the local density of superconducting electrons are defined as

ns = |ψ(x)|2. (1)

The idea is to expand the free energy in a series with coefficients α and β and use variational

principle to obtain the GL differential equation:

1

2m∗ (
h

i
∇− e∗

c
A)2ψ + β|ψ|2ψ = −α(T )ψ. (2)

I now define the penetration depth and the coherence length and introduce the famous

GL parameter. The penetration depth λ and the coherence length ξ are defined as

λ(T ) =
λ(0)

|1− (T/Tc)4|1/2
, (3)

and

ξ(T ) =
~

|2m∗α(T )|1/2
. (4)

The GL parameter is defined as

κ =
λ

ξ
, (5)

which is a constant approximately independent of temperature. One important implication of

the GL parameter, shown by Abrikosov, is that κ =
√

2 is the critical value of distinguishing

between Type-I and Type-II superconductors.

In 1957, Abrikosov showed the existence of flux tubes between the Hc1 and Hc2, which is

the mix state region shown in Fig. 4 and Fig. 5. In the mix state, the magnetic field starts
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to penetrate into the superconductor before the superconductivity is completely destroyed.

Each vortex carries a quantum of flux

Φ0 =
hc

2e
. (6)

The vortices can move around in the superconductors driving by external forces or thermal

fluctuations. Another property of vortices is that they experience repulsive forces between

each other. In the approximation κ >> 1, the interaction force between the vortices is

F12 =
Φ2

0

8π2λ2
K0(

r12
λ

). (7)

This repulsive force will be very useful in our energy landscape calculation.

C. Experimental Investigations Of Vortex Matter

Since its first discovery, vortex matter has been studied both experimentally and theoreti-

cally. I have described the theoretical basis for the vortex matter in Section IB, and now I

would like to describe the experimental observations of vortex matter in various supercon-

ductors. Some common techniques used to investigate the vortex structures are scanning

electron microscopy (SEM)[19], scanning tunneling microscopy (STM)[15, 20, 21] scanning

hall probe microscopy (SHPM)[22], Bitter decoration[11, 23], and scanning superconducting

quantum interference device microscopy (SQUID)[7, 24]. Sometimes these techniques are

used in combination.

For the bulk superconductors, I have already mentioned the famous observation by Ess-

mann using the Bitter decoration (see Fig. 6). The lead-indium superconductor Essmann

observed belongs to the conventional Type-II superconductors. In this project, we will focus

on the experimental observations of mesoscopic superconducting samples and unconventional

superconductors. We will present experimental observations of both the mesoscopic super-

conductors and the unconventional superconductors. The experimental examples below show

that the experimental configuration we are proposing in this project is viable and will also

serve as a justification for the simulation results in the later sections.
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1. Mesoscopic Superconducting Samples

Experimentalists could pattern superconducting samples via e-beam and focused ion

beam lithography into different mesoscopic shapes and apply different magnetic fields onto

the sample. According to equation (6), each vortex carries a fixed number of magnetic

flux. Therefore, the strength of the magnetic field determines the number of vortices in the

mesoscopic container. In this section, we show the experimental results for triangular samples,

square samples, and circular samples under different magnetic fields. The experimental

observations mentioned in this section are observations of conventional superconductors with

isotropic vortex-vortex interaction.

The vortices in triangular samples are shown in Fig. 9. This experiment was done by

Zhao, et al. using SEM and Bitter decoration[25]. The observed results qualitatively agrees

with our simulation results in Fig. 20.

Zhao’s group also investigated the square samples[26], where again they have used SEM

and Bitter decoration. The experimental results are shown in Fig. 10.

In 2006, Grigorieva’s group studied the circular samples using SEM and bitter decoration[18]

the results are shown in Fig. 11.

2. Unconventional Superconductors

As mentioned above, the unconventional superconductors often have anisotropic interaction

between the vortices as a result of their anisotropic order parameters. Consequently, we seek

to predict anisotropic order parameters by identifying the anisotropic interaction between

the vortices.

One of the strongest evidences for the existence of the anisotropic interaction in

Bi2Sr2CaCu2O8+δ (BSCCO) is the observation of the vortex chian states in BSCCO shown

in Fig. 12. This observation qualitatively agrees with our simulation results shown in Fig. 18

and the numerical Ginzburg-Landau calculations.

Another example for unconventional superconductor is the Pb island growing on the

undoped Si(111)[15, 27, 28] that is shown in Fig. 13.

MgB2 is an unconventional superconductor that has measured anisotropy γx, which is the

ratio between the of perpendicular directions[19, 29]. The SEM imaging of the vortices in
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FIG. 9: SEM images of vortices in triangular samples made of thick Nb film deposited on a

Si substrate using magnetron sputtering. The number of vortices ranging from 2 to 16 in the

samples.

single MgB2 crystal at low magnetic field is shown in Fig. 14. The γx for MgB2 is estimated

to be approximately equal to 2.5.

The last unconventional superconductor I want to show here is the Y1Ba2Cu4O8 (YBCO-

124)[7, 30]. An vortex structure imaging obtained using Bitter decoration is shown in Fig. 15

The anisotropy in a-b plane is measured to be approximately equal to 1.4, where the a-b

plane is defined in Fig. 8 and the anisotropy is just the relative ratio of the interaction

strength in the perpendicular direction. I will use the anisotropy of the YBCO-124 as the

weak anisotropy limit in our rescaling theory calculation.
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FIG. 10: SEM images of vortices in triangular samples made of thick Nb film deposited on a

Si substrate using magnetron sputtering. The number of vortices ranging from 2 to 13 in the

samples.

II. OVERVIEW AND MAIN RESULTS

One of the main challenges in the field of superconductor is the identification of novel

unconventional superconductors. One of the key properties of the unconventional super-

conductors is the existence of anisotropic order parameters, which leads to the anisotropic

interaction between the vortices in the superconductors. While the anisotropic interaction is

hard to identify on its own, we argue that the interplay between the anisotropic interaction
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FIG. 11: SEM images of vortices in triangular samples made of thick Nb film deposited on a

Si substrate using magnetron sputtering. The disks are d = 2.3, 3.4, and 5.0µm in diameter

respectively.

FIG. 12: SHPM images of vortex chain in the BSCCO in the strong anisotropy regime.
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FIG. 13: STM images for the vortices in the Pb island. The smallest island N3 has one

vortex and the middle size island N2 has two vortices, so the largest island N1 should have

three vortices instead of one giant vortices. This is probably due to the confinement effect of

the Pb island [15].

and the confinement effect due to the container wall will amplify the effects of anisotropy at

certain magnetic field. With a smart combination of the container shape and magnetic field,

we could devise experiments that the anisotropic interaction in the superconductors become

the most evident.

In this work, we investigate both the weak and strong anisotropy regime. In the weak

anisotropy regime, we seek to identify the interaction using the special wall effect of the

mesoscopic superconductors by making a optimized choice of the container geometry. We

solve for the energy landscape of the mesoscopic samples to find the ground state vortex

configurations of different vortex numbers and different container shapes. We compare the

configurations to find the container geometry that is best at identifying the anisotropic

interaction between the vortices. We show that the vortex structure of eight vortices in

triangular samples has a qualitative difference in the presence of weak anisotropic interaction.

We conclude that the containers with low symmetry, e.g. triangular containers, are best at

17



FIG. 14: MgB2 sample that does not form a regular triangular lattice due to its underlying

anisotropic interaction.

identifying the anisotropic interaction between the vortices.

In the strong anisotropy regime, we observe the formation of vortex chains in the supercon-

ductors, which could also be used as evidence for the existence of anisotropic interaction. In

the later part of our project, we seek to verify our calculation using the numerical Ginzburg-

Landau theory proposed by Milošević and Geurts[31]. We have qualitatively confirmed the

emergence of the vortex chains in superconductors for the strong anisotropy regime. We will

verify our calculation for the weak anisotropy regime in the future.

III. ENERGY LANDSCAPE CALCULATION

In order to find the best container geometry that can be used to identify experimentally

the anisotropic interaction between the vortices, we survey different container geometries to

find geometry that the anisotropic interaction is the most evident from its vortex structures.

We calculate the ground state vortex structures by solving the potential energy landscape

of the system. There are two main contributions to the potential energy of the system:
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FIG. 15: Vortices in YBCO-124 sample with a Fourier transform of the image at the top

right-hand corner.

the vortex-vortex interaction and the confinement effect from the sample. The strength

of both interaction depend on the locations of the vortices, so we can define a potential

energy landscape as a function of the locations of the vortices. The locations of the vortices

at the minimum potential energy will be the ground state vortex structure configuration.

Using the energy landscape, we are able to produce theoretical results that are in qualitative

agreements with the experimental observations described in Section IC.

Since the Abrikosov vortices in the superconductors have translational symmetry in the

direction parallel to the external magnetic field[1, 7], we can treat the Abrikosov vortices as

2D quasiclassical particles lying in the same plane that is perpendicular to the direction of

the magnetic field. The location ~r = (x, y) of each vortex is defined by the coordinate of its

center. For a system of n vortices the potential energy landscape of the system is a function
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of 2n dimensions:

Etotal(~r1(x1, y1), ~r2(x2, y2), ...) =
∑
i,j

Evv(~ri, ~rj) +
∑
i

Ewall(~ri), (8)

where Evv is the vortex-vortex interaction energy and Ewall is the energy of the vortices due

to the walls of container.

In Type-II superconductors, the vortices experience a repulsive force between each other[1]

and with the container walls. For isotropic interaction between the vortices, the vortex-vortex

interaction assumes the form of a modified Bessel function in equation (7). In our simulation,

we simplify the equation (7) to the following equation:

Evv(~ri, ~rj) ∝ K1(r), (9)

where r = |~ri − ~rj| and K1 is the modified Bessel function of first or zeroth order. λ is the

penetration depth, which is chosen to be unity in the isotropic calculation. We are allowed to

omit factors in front of the Bessel function because the overall factors in front of the Bessel

function in equation (7) does not affect much the structure of the vortex configurations,

which is what we are primarily concerned with.

To characterize the confinement of the container, we assume a simple 1/r repulsive forces

between each vortex and the container walls. For circular container, the potential energy

assumes the following form:

Ewall(~ri) ∝
|~ri|

(a− |~ri|)2
, (10)

where a is the radius of the circular container. Since we assume that the container is centered

at (0, 0), the term a− |~ri| is the shortest distance of the vortices to the edges of the circular

container. For other container geometries, the potential energy depends on the distance from

the center of the vortices to each side of the container:

Ewall(~ri) ∝
∑
w

1

rwi
, (11)

where rwi is the distance from the center of the vortices to the wall and we sum over all the

sides of the container. In our calculation, we will set all the proportional factors to unit. The

energy landscape defined above is shown in Fig. 16.

In the rest of this section, we survey different configurations by solving for the ground state

of the energy landscape of both the isotropic interaction and anisotropic interaction using
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FIG. 16: Energy landscape defined in equation (8) with isotropic vortex-vortex interaction.

The green points indicate the transition states between the ground states.

the eigenvector following method. We will use two different ways to simulate anisotropic

interaction between vortices and discuss the calculation results of both of them. We use a

phenomenological equation to study the anisotropy between the vortices. We also use the

rescaling theory. We are able to use the phenomenological equation to reproduce the vortex

chain states observed in BSCCO in Fig. 12. For the rescaling theory, we argue that the

mesoscopic samples with low symmetry is best at identifying the anisotropic interaction in

the superconductors.

A. Eigenvector Following Method

To solve for the ground state configuration of the energy landscape, we use the eigenvector

following method, which is a common method in the energy landscape search[32, 33]. The

eigenvector following method is a upgraded version of the Newton-Raphson method[34]. It

gives a simple modification to Newton-Raphson’s search step[35]

h =
∑
i

−Fi
(bi − λ)

ui, (12)

where λ can be interpreted as a shift parameter on the Hessian eigenvalue bi. The eigenvector

following algorithm utilizes the rational function approach and gives the following two

equations of λ[36, 37],

(H− λ)h + g = 0, (13)

21



FIG. 17: Anisotropic interaction potential energy between two vortices.

and

gTh = λ, (14)

where H is the function of interest and g is the gradient of the function at a specific point.

Solving the above two equations gives the self-consistent equation

∑
i

−F 2
i

(bi − λ)
= λ, (15)

which can be used to solve for λ recursively.

The benefits of using the eigenvector-following method is that it has increased stability

comparing to the Newton-Raphson method. In computational chemistry, the eigenvector-

following method can be used to find the transition state[32, 33]. In this project, we only

use the eigenvector following to solve for the ground state energy of the system.

B. Phenomenological Equation

1. Phenomenological equation

As pointed out above, the vortex-vortex interaction takes the form of a modified Bessel

function defined in equation (9). Therefore, we could assume the anisotropic vortex-vortex

interaction has similar forms but with different interaction strength in different directions.
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FIG. 18: Stable configurations for ten vortices in a square container under different

anisotropy.

This is the approach Olszewski, et al.[38] took in their phenomenological anisotropic equation

E(r, θ)vv = AvK0(r)[1 + Aa cos2 (
na(θ)

2
)], (16)

where r = |~ri − ~rj| as usual , Av is the overall interaction strength, Aa is the strength of the

anisotropy, na is the number of strong interaction axes, and θ = tan−1 (ry/rx) is the angle

between the two vortices with respect to the positive axis. The anisotropic interaction energy

between two vortices is demonstrated in Fig. 17.

2. Calculation Results

In our calculation, we take Av = 1 because it is an overall strength factor that does

not affect the vortex structure much. We take na = 4 because four-fold anisotropy is very

common in unconventional superconductors. For example, the YBCO-124 has four-fold

anisotropy in a specific plane[7]. We simulate the system of ten vortices because ten is enough

to observe the vortex structure and it is not too many where the confinement effect is no

longer significant. The Aa parameter controls the strength of the anisotropic interaction,

which is the parameter that we will vary in this simulation.

One of the notable phenomena of the anisotropic interaction is the formation of vortex
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chains shown in Fig. 12. If we observe vortex chains in our superconducting sample, we can

conclude that there are underlying anisotropic interaction in the material.

In this calculation we gradually increasing Aa from 0 to 3, and solve for the stable

configurations at each anisotropy strength to monitor how the vortex structure changes as a

function of the anisotropy. We observe the formation of the vortex chains when we gradually

increase the anisotropic interaction between the particles. The results are summarized in

the Fig. 18, where we have solved for the stable configurations of ten vortices in a square

container. As the anisotropy increases, the vortices start to line up in one direction and gets

far away from each other in another direction. A vortex chain becomes visible when the

anisotropy is larger than Aa = 0.70.

Before we proceed, there are several things we need to pay special attention to. We note

that the stable configurations calculated from equation (16) may not accurately reflect the

actual observations in the experiment. For example, in the high anisotropy limit, the vortices

may get too close to each other and form the so called giant vortices[15]. However, the

discussion of the giant vortice is beyond the scope of this project. Another limitation of

using the phenomenological equation is that we do not know the experimental values for the

parameters we used. While our calculation results agree qualitatively with the experimental

observations, we do not know what materials have Aa = 0.70. Therefore, we develop an

alternative method using the rescaling theory, which can be verified easier.

C. Rescaling Theory Approach

1. Rescaling Theory

As an alternative to the phenomenological equation, we could also simulate anisotropic

interaction from the isotropic interaction using the rescaling theory[7, 39]. The rescaling

theory starts from the London model that writes the supercurrent in terms of the vector

potential and the phase:

j = − c

4πλ2
(A +

Φ0

2π
∇iφ). (17)

This is an isotropic equation and can be generalized to study the anisotropic superconductors

by taking an anisotropic penetration depth λ. We set λi to be different along the different
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(a) samples with isotropic interaction, γx = 1.0

0 1 2 3 4
0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

-3

-2

-1

0

1

2

3

-4 -2 0 2 4
-4

-2

0

2

4

(b) samples with anisotropic interaction, γx = 1.4

FIG. 19: Eight vortices in different shapes of the container.

symmetry axes, so that the equation (17) becomes

ji = − c

4πλ2i
(Ai +

Φ0

2π
∇iφ). (18)

We define γx as the ratio between the penetration depth along the two symmetry axes

γx =
λx
λy
, (19)

where we set the symmetry axes to match the x-axis and y-axis in the coordinate system.

One benefit of this theory is that the ratio γx is a measurable quantity[19, 29] so that we

can compare our simulation result with the experimental observation in actual materials. We

simulate the anisotropy by rescaling the penetration depth λx of the x direction by the ratio

γx. Since we set penetration depth as the unit of length in our system, multiplying λx with

γx is equivalent to redefine the displacement between two vortices

~r12 = (x2 − x1, y2− y1) 7→ ~r12 = (γx(x2 − x1), y2− y1). (20)

We then obtain the anisotropic energy landscape by plugging equation (20) into the isotropic

energy landscape function defined in equation (8).

2. Numerical Results

In order to develop an experimentally viable method of identifying low anisotropy within

superconducting materials, we focus on relatively low anisotropic materials like YBCO-124.
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According to Bending and Dodgson[7], YBCO-124 has an anisotropy with γx = 1.4 ± 0.5

in the a-b plane as defined in the Fig. 8. We surveyed different container shapes with

different vortex numbers and find that the difference between the isotropic interaction and

the anisotropic interaction is most evident in a triangular container with 8 vortices. Once

we identify the anisotropic interaction between the vortices, we can use it as evidence for

anisotropic order parameter, which possibly hint at the existence of novel unconventional

superconductors.

In the simulation we set the anisotropy γx = 1.4 and vary the number of vortices n and the

shape of the container. In actual experiments the number of vortices is related to the strength

of the magnetic field. They are roughly correlated by the magnetic flux each vortex carries

as shown in equation (6). The experimentalist can also sample with different shapes. In our

simulation, the number of vortices determines the dimension of the potential energy (8), and

the shape of the container determines the the energy of the vortex interaction with the wall

Ewall. Since we are looking for the best sample shape, we first survey containers of different

shapes with a fixed vortex number. In Fig. 19, we fix the number of the vortices to eight and

survey different container shapes. We choose a relatively low number vortices because we are

interested in the regime where the confinement effect plays a significant role. In the limit of

many vortices, the confinement effects are weaker compared to the vortex-vortex interaction.

The vortices at the center start to form triangular lattices like in the bulk materials. The

choice of eight vortices will be evident shortly.

In Fig. 19 we only observe qualitative changes in triangular samples. The vortices form

two shells in the presence of the anisotropic interaction but only one shell of the vortices in

the absence of it. Other sample shapes don’t show this kind of qualitative change. Therefore,

we conclude that the triangular container works best for detecting anisotropy when there are

eight vortices. We now proceed to show why we choose the container with eight vortices.

We survey different numbers of vortices in a triangular container. The results are shown

in Fig. 20 and Fig. 21, We found that the presence of the anisotropic interaction is most

evident when there are eight vortices in the container. We observe an extra shell of vortices

in Fig. 21(c) comparing to its isotropic counterpart Fig. 20(c). We do not observe such

qualitative change for other vortex numbers. This is reasonable because eight vortices is

at the boundary of forming a new shell of vortices. We observe two shells of vortices in

Fig. 20(d), but only one shell of vortices in Fig. 20(b). As the result of the anisotropic
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interaction, the system forms another shell of vortices to minimize the total energy. The

qualitative difference between the two configurations could be used to identify anisotropic

interaction in the actual experiments.
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FIG. 20: Triangular samples with isotropic interaction, γx = 1.0.
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FIG. 21: Triangular samples with anisotropic interaction, γx = 1.4.

We chose eight vortices in a triangular container because that’s the best configuration we

found after surveying many other combinations of container shape and vortex number, which

we will not have time and space to list all of them in this thesis. The Fig. 20 and Fig. 21

both show isotropic and anisotropic interaction for different vortex numbers within the low

vortex regime. The underlying anisotropic interaction is most evident when there are eight

vortices in the container.

One caveat worth mentioning is that in addition to the ground state configuration, there

often exists other low lying stable configurations that may be observed experimentally.

Nonetheless, this is a common issue people are facing in vortex observation. The vortex

structure could be influenced by the impurities, temperature, and etc. Providing a solution

to this problem is beyond the scope of this thesis.

IV. NUMERICAL GINZBURG-LANDAU CALCULATION

As mentioned above, the phenomenological GL equations could be adjusted to study

the unconventional superconductors. The GL equations are also very useful in studying
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the mesoscopic superconducting samples[40]. In 2010, Milošević and Geurts proposed a

numerical approach for solving the GL theory in the mesoscopic systems that is readily

applicable to simulate the actual experiments[31]. One experiment they have studied is the

Pb island shown in Fig. 13. Milošević and Geurts developed their code in FORTRAN. In this

project, we adopt Milošević and Geurts’ FORTRAN package and adjust it to accommodate

for the anisotropic interaction. We verify the formation of the vortex chains done by the

phenomenological equation calculation using the numerical Ginzburg-Landau package and

we are planning on to use the package to verify the rescaling theory in the future.

A. Numerical Ginzburg-Landau Theory

The numerical Ginzburg-Landau theory (NGL) has been discussed in great detail in

Milošević and Geurts’ paper[31]. The starting point of NGL is the free energy functional F

with respect to ψ and ~A

F{ψ, ~A} =
H2
c

4π

∫ [
−|ψ|2 +

1

2
|ψ|4 +

1

2
|(−i∇− ~Aψ|2 + κ2(~h− ~H0)

2

]
dV, (21)

where λ, ξ, and κ are the penetration depth, the coherence length, and the GL parameter

defined in the Section IB. ~A and H are the vector potential and magnetic field respectively.

We seek to find the solution ψ that minimizes the free energy (21).

To solve for ψ, the NGL rewrite the GL equations in the following form using the London

gauge ∇ · ~A = 0. The GL equations assumes the following form:(
−i∇− ~A

)2
ψ = ψ(1− |ψ|2), (22)

and

−κ2∆ ~A =
1

2i
(ψ∗∇ψ − ψ∇ψ∗)− |ψ|2 ~A, (23)

with the boundary condition ~n ·
(
−i∇− ~A

)
ψ|boundary = 0.

Milošević’s algorithm solve the two coupled GL equations for a fixed magnetic field

self-consistently using the link variable approach[41]. NGL defines the link variables between

~r1 and ~r2 as

U ~r1, ~r2
µ ≡ exp

[
−i
∫ ~r2

~r1

~Aµ(~r) · d~µ
]
, (24)

where µ = x, y, z. In NGL calculation, the whole system is discretized and mapped on a

rectangular grid. After substituting equation (24) into the GL equations (22) and (23) and
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perform proper transformations, the two coupled GL equations become:

∂ψ

∂t
=
Ukj
x ψk
a2x

+
U ij
x ψi
a2x

+
Umj
y ψm

a2y
+
Unj
y ψn

a2y

− 2ψj

(
1

a2x
+

1

a2y

)
− (|ψj|2 − 1)ψj + f̃j(t),

(25)

and

−i 1

U j
x

∇(U j
xψj) = −iU

kj
x ψk − ψj
ax

. (26)

In equation (25), the different indices represent adjacent grid points to the point j and

ax, ay, az are lattice constants for the grid used. For example, ψk represents the order

parameter at grid point k. The f̃(t) is a dimensionless random force.

The value of the order parameter ψ at each grid point can be solved using equation (25).

The order parameter ψ will then be used to calculate the supercurrent using equation (26).

Next, the NGL uses the supercurrent to update the vector potential. The vector potential

is substituted back to the equation (25), and the order parameter can be calculated again.

This process is repeated until a convergent solution for both GL equations is found.

After finding the order parameter ψ, we can use it to calculate the current density, phase,

and the total energy of the system. The current density and the phase indicate the number

of vortices and the vortex structure in the system, which is important for our study.

B. Rescaling The Coherence Length

There are several different ways to introduce anisotropy into the discrete GL equations.

In this project, we introduce anisotropy into the GL equations by multiplying a rescaling

constant ηx to the two link variable terms of the x direction of equation (25), i.e. the first

two terms of the equation:

Ukj
x ψk
a2x

+
U ij
x ψi
a2x

7→ ηx

(
Ukj
x ψk
a2x

+
U ij
x ψi
a2x

)
. (27)

We provide an intuitive justification for this approach. Comparing equation (25) with

equation (22), we notice that the link variable terms correspond to the Laplacian of the order

parameter ψ. Using ψ ∝ exp(−r/ξ), the Laplacian is proportional to 1
ξ2
. Therefore, we could

view consider ηx as an rescaling coefficient for the coherence length

ηx =
ξ2x
ξ2y
, (28)
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which is analogous to the rescaling coefficient γx in the rescaling theory defined in equation (19).

We will leave the formal proof for the future work.

After we plug equation (27) into equation (25), we solve the GL equations self-consistently

to find the order parameter ψ in the presence of the anisotropic interaction. We can then

calculate the current density and the phase using ψ.

C. NGL Results

In this project, we study the vortex structure under different magnetic field and anisotropy

using NGL theory. We focus on the circular containers under weak fields. The field is defined

in the unit of the critical field Hc2 for the bulk superconductor:

H ∝ 1

Hc2

,

where we set Hc2 = 2.07·106
2π

1
ξ(0)

with ξ(0) = 30 nm. The ηx is defined above in equation (28).

We run the calculation for three different fields H = 30/Hc2, 40/Hc2, 50/Hc2 and five different

anisotropy strength ηx = 1, 3, 5, 6, 9. When ηx = 1, we recover the isotropic interaction. The

calculation result is shown in Fig. 22, 23, and 24. We observe the formation of the vortex

chains for all three magnetic fields when we ramp up the anisotropy from 1 to 9. This is

in qualitative agreement with our simulation results using the phenomenological equation

shown in Fig. 18 and the experimental observation shown in Fig. 12. We have verified our

phenomenological equation calculation using NGL, and we are planning on to use NGL to

verify our rescaling theory calculations as well.

V. SUMMARY

In this project, we use energy landscape calculation to survey different container shapes

and different magnetic fields under different anisotropic interaction. We find that the vortices

form vortex chains in the strong anisotropy regime. In the weak anisotropy regime, we find

that the containers with low symmetry are best at identifying the anisotropic interaction. We

observe qualitative difference in the triangular samples with eight vortices. After conducting

energy landscape calculations, we perform the numerical Ginzburg-Landau calculations to

verify our results. We showed the formation of vortex chains in the strong anisotropy regime.

We are currently working on verifying the qualitative difference in the triangular containers.
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FIG. 22: Circular samples in the field H = 30/Hc2. The circular lines concentric to the

container are contours for the density of the order parameter ψ. The lines connecting each

vortices to the edge are the contours for the phases of ψ.
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FIG. 23: Circular samples in the field H = 40/Hc2.
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FIG. 24: Circular samples in the field H = 50/Hc2.

In the future, we will continue to develop the numerical Ginzburg-Landau calculations.

In addition to verify the calculation results from the rescaling theory, we will also explore

experimental measurements under varying magnetic fields. The vortex structure may evolve

in a different way in the presence of the anisotropic interaction. The numerical Ginzburg-

Landau calculation allows us to calculate how the vortex structure will vary as the applied

magnetic field is changing step-wisely. We could exploit the hysteresis in the superconductors

and find the experimental protocols that are best at identifying the anisotropic interaction.
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